【C++】:函数重载,引用,内联函数,auto关键字,基于范围的for循环,nullptr关键字

目录

  • 一,函数重载
    • 1.1 函数重载的定义
      • 1.1.1.形参的类型不同
      • 1.1.2参数的个数不同
      • 1.1.3.参数的顺序不同
      • 1.1.4.有一个是缺省参数构成重载。但是调用时存在歧义
      • 1.1.5.返回值不同,不构成重载。因为返回值可接收,可不接受,调用函数产生歧义。
    • 1.2 C++支持函数重载的原理 -- 名字修饰
  • 二,引用
    • 2.1 引用的概念
    • 2.2 引用的使用场景
      • 2.2.1 引用做参数
      • 2.2.2 引用做返回值
    • 2.3 引用特性
    • 2.4 引用的权限问题
      • 2.4.1 举例1
      • 2.4.2 举例2
      • 2.4.3 举例3
      • 2.4.4 总结
    • 2.5 常引用
      • 2.5.1 类型转换时
      • 2.5.2 表达式运算时
    • 2.6 传值、传引用效率比较
    • 2.7 引用和指针的区别
  • 三,内联函数
    • 3.1 内联函数的概念
    • 3.2 inline 关键字
    • 3.3 内联的特性
  • 四,auto关键字(C++11)
    • 4.1 给类型取别名
    • 4.2 可由初始化自动推导类型
    • 4.3 auto不能推导的场景
  • 五,基于范围的for循环
    • 5.1 范围for的语法
    • 5.2 范围for的使用条件
  • 六,nullptr关键字

一,函数重载

在C语言中,同名函数是不能出现在同一作用域的,但是在C++中却可以,但是要满足函数重载的规则。

那什么是函数重载呢?它的规则是什么呢?

1.1 函数重载的定义

函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似数据类型不同的问题。

举几个例子:

1.1.1.形参的类型不同

void Swap(int* pa, int* pb)
{
	cout << "void Swap(int* pa, int* pb)" << endl;
}

void Swap(double* pa, double* pb)
{
	cout << "void Swap(double* pa, double* pb)" << endl;
}

int main()
{
	int a = 0, b = 1;
	double c = 1.1, d = 2.2;

	Swap(&a, &b);
	Swap(&c, &d);

	return 0;
}

在这里插入图片描述

1.1.2参数的个数不同

在这里插入图片描述

1.1.3.参数的顺序不同

void f(int a, char b)
{
	cout << "void f(int a, char b)" << endl;
}

void f(char c, int d)
{
	cout << "void f(char c, int d)" << endl;
}

int main()
{
	int a = 0, b = 1;
	double c = 1.1, d = 2.2;

	f(1,'c');
	f('d',3);

	return 0;
}

在这里插入图片描述

1.1.4.有一个是缺省参数构成重载。但是调用时存在歧义

void f()
{
	cout << "void f()" << endl;
}

void f(int a = 10)
{
	cout << "void f(int a = 10)" << endl;
}


int main()
{
	int a = 0, b = 1;
	double c = 1.1, d = 2.2;

	f();
	f(5);


	return 0;
}

在这里插入图片描述

1.1.5.返回值不同,不构成重载。因为返回值可接收,可不接受,调用函数产生歧义。

int f()
{
	return 0;
}

void f()
{
	cout << "void f(char c, int d)" << endl;
}

int main()
{
	int a = 0, b = 1;
	double c = 1.1, d = 2.2;

	int ret = f();
	cout << ret << endl;
	f();

	return 0;
}

在这里插入图片描述

1.2 C++支持函数重载的原理 – 名字修饰

为什么C++存在重载,C语言不支持?C++为什么支持?

这两个问题深究起来十分复杂。它们与预处理、编译、汇编、链接有极大的关系,这里只是大致解释,只要记住结论即可。

在一般的工程项目中,都会进行多文件操作,那一个函数就一定会声明与定义分离。

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/233f4fee513464e831df277ce671d5e.png

通过上图我们需要知道的两点:

1.函数的地址:转到反汇编时,每个函数都有一堆要执行的指令,函数的地址是第一句指令的地址。
2.函数的地址要依靠函数的定义生成,而不是函数声明。

函数的重载发生在函数链接的时候。
C语言在链接时,直接用函数名去查找,当遇到同名函数时,无法区分,就不支持重载。
C++在链接时,直接用修饰后的函数名去查找,当遇到同名函数时,可以区分,支持重载。

其实不同的编译器有不同的函数名修饰规则。
在Linux的g++编译器下:

C语言不支持重载,直接就是函数名:
在这里插入图片描述

C++支持重载,有函数名的修饰:

在这里插入图片描述

上面的图文看不懂没关系。通过上面的分析。可以得出结论:

  • 在项目工程中,使用多文件操作,函数的定义与声明分离,而在链接的时候,要用函数名去找地址。C语言直接用函数名去查找,当遇到同名函数时,无法区分,而C++有函数名修饰规则,只要参数不同,修饰出来的名字就不一样,可以区分 。并且不同编译器的修饰规则不同。

二,引用

2.1 引用的概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间也可以给别名再取别名。

举个例子:

int main()
{
	int a = 1;

	//引用:&  b是a的别名
	int& b = a;

	//也可以给别名取别名
	int& c = b;

	//值相同,地址也相同
	cout << "a = " << a<< endl; 
	cout << "b = " << b << endl;
	cout << "c = " << c << endl << endl;

	cout << "&a = " << &a << endl;
	cout << "&b = " << &b << endl;
	cout << "&c = " << &c << endl;


	return 0;
}

在这里插入图片描述

2.2 引用的使用场景

2.2.1 引用做参数

最典型的例子就是我们经常使用的交换函数


//a是x的别名,b是y的别名。a,b的交换就是x,y的交换
void Swap(int& a, int& b)
{
	int tmp = a;
	a = b; 
	b = tmp;
}

int main()
{
	int x = 1;
	int y = 2;

	Swap(x, y);//这里就不用传地址过去了

	cout << x << ":" << y << endl;

	return 0;
}

2.2.2 引用做返回值

这里暂时不解释,到后面学习了类和对象后再解释,会更加清晰。

2.3 引用特性

1.引用在定义时必须初始化
2.一个变量可以有多个引用
3.引用一旦引用一个实体,再不能引用其他实体

第1,2条容易理解,这里说明第三条:

int main()
{
	int x = 0;
	int& y = x;//y是x的别名

	int z = 1;

	//这里y是z的别名,还是z赋值给y?
	//是赋值。引用一旦引用一个实体,就不能再改变指向了!
	y = z;

	cout << "x = " << x << endl;
	cout << "y = " << y << endl;
	cout << "z = " << z << endl << endl;

	return 0;
}

在这里插入图片描述

2.4 引用的权限问题

这里所说的权限有:权限放大,权限缩小,权限平移

2.4.1 举例1

int main()
{
	//这里权限放大了。m是只读,n变成m的别名后,可读可写。
	const int m = 0;
	
	//int& n = m; //err
	
	int p = m;//可以,不是权限的放大。
              //只是把m拷贝给p,p的修改不影响m。

    //n也是只读的,权限的平移
    const int& n = m;//可以
    
	return 0;
}

2.4.2 举例2

int main()
{
	const int m = 0;

	// 权限的放大
	//p1可以修改,*p1不行,const修饰的是p1指向的内容,即*p1。
	const int* p1 = &m;
	p1++;//可以

	//int* p2 = p1;//err. *p2是可以修改的,所以权限放大了。
		
	return 0;
}

2.4.3 举例3

int main()
{
	//权限的缩小
	int x = 0; 
	int& y = x;

	const int& z = x;//可以

	y++;//x,z都会修改

	return 0;
}

2.4.4 总结

1.权限放大问题存在于引用和指针里,普通的赋值拷贝不会
2.权限只能缩小,平移,不能放大

2.5 常引用

2.5.1 类型转换时

因为类型转换的过程中会生成临时变量,这个临时变量具有常性(相当于被const修饰)。权限被放大了。

int main()
{
	double d = 3.24;

	//类型转换
	int i = d;

	//int& r = d;err 
	
	const int& r = d;//可以。加了const就相当于权限平移了。

	return 0;
}

2.5.2 表达式运算时

表达式运算也会生成临时变量,解释同上。

int main()
{	
	int x = 0, y = 1;

	//表达式运算也会生成临时变量
	//int& r2 = x + y; //err

	const int& r2 = x + y; //可以

	return 0;
}

2.6 传值、传引用效率比较

其实这与函数的传值,传址调用类似。当函数传值调用时,会在内存中又开辟空间临时拷贝,当参数较大时,效率低下。而传址调用却不会,会提高效率。

#include <time.h>

struct A { int a[10000]; };

void TestFunc1(A a) {}
void TestFunc2(A& a) {}

void TestRefAndValue()
{
	A a;
	// 以值作为函数参数
	size_t begin1 = clock();
	for (size_t i = 0; i < 10000; ++i)
		TestFunc1(a);
	size_t end1 = clock();
	// 以引用作为函数参数
	size_t begin2 = clock();
	for (size_t i = 0; i < 10000; ++i)
		TestFunc2(a);
	size_t end2 = clock();

	// 分别计算两个函数运行结束后的时间
	cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;
	cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}

int main()
{
	TestRefAndValue();

	return 0;
}

在这里插入图片描述

注意:0毫米表示运行时间小于1毫米。

2.7 引用和指针的区别

语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。

int main()
{
		int a = 10;
		int& ra = a;

		cout << "&a =  " <<  &a << endl;
		cout << "&ra = " << &ra << endl;
	
	return 0;
}

在这里插入图片描述

底层实现上实际是有空间的,因为引用是按照指针方式来实现的。

int main()
{
 int a = 10;
 
 int& ra = a;
 ra = 20;
 
 int* pa = &a;
 *pa = 20;
 
 return 0;
}

我们来看下引用和指针的汇编代码对比:

在这里插入图片描述

引用和指针的不同点:

  1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
  2. 引用在定义时必须初始化,指针没有要求。
  3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体。
  4. 没有NULL引用,但有NULL指针
  5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)。
  6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小。
  7. 有多级指针,但是没有多级引用。
  8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理。
  9. 引用比指针使用起来相对更安全。

三,内联函数

如果有一个频繁调用的小函数,例如Swap交换函数,在频繁调用时会有建立栈帧的消耗,我们想消除这样的消耗,该怎么做呢?

C语言中是使用宏函数解决,C++中就可以使用内联函数。

3.1 内联函数的概念

inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。

3.2 inline 关键字

在没有加 inline 之前:

 int Add(int x, int y)
{
	return x + y;
}

int main()
{
	int c = Add(1, 2);
	cout << c << endl;

	return 0;
}

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/a2e02365da664bc89959a7e1cc548147.png

如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的调用。

inline int Add(int x, int y)
{
	return x + y;
}

int main()
{
	int c = Add(1, 2);
	cout << c << endl;

	return 0;
}

查看方式:
1.在release模式下,查看编译器生成的汇编代码中是否存在call Add。
2.在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不会对代码进行优化,以下给出vs2013的设置方式)。

在这里插入图片描述

转到汇编中:

在这里插入图片描述

3.3 内联的特性

1.inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。

2.inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性

在这里插入图片描述

3.inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到。

四,auto关键字(C++11)

其实 auto 关键字的介绍和使用内容十分丰富,我们现在这个阶段不需要了解太详细,在以后的学习中会边学边了解。

4.1 给类型取别名

随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:类型难于拼写,含义不明确导致容易出错

有人会想到 typedef 不也可以给类型取别名吗?但是在某些场合下是有缺陷的:

typedef char* pstring;

int main()
{
	//const pstring p1;//err. const修饰指针p1本身,
	                   //而const修饰的指针要初始化
	                           
	const pstring* p2;  // 可以. const修饰 *p2

	return 0;
}

4.2 可由初始化自动推导类型

比如,下面的写法是正确的:

int main()
{
	int i = 0;
	
	//根据右边得到初始化自动推导类型
	auto j = 7;

	return 0;
}

注意:下面的 typeid(变量名).name 判断一个对象的类型

int TestAuto()
{
	return 10;
}

int main()
{
	int a = 10;
	auto b = a;
	auto c = 'a';
	auto d = TestAuto();

	//
	cout << typeid(b).name() << endl;
	cout << typeid(c).name() << endl;
	cout << typeid(d).name() << endl;

	//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
	return 0;
}

在这里插入图片描述

  • 使用auto定义变量时必须对其进行初始化在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。

4.3 auto不能推导的场景

1.auto不能作为函数的参数
2.auto不能直接用来声明数组

五,基于范围的for循环

5.1 范围for的语法

在C++98中如果要遍历一个数组,可以按照以下方式进行:

void TestFor()
{
 int array[] = { 1, 2, 3, 4, 5 };
 for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
     array[i] *= 2;
 
 for (int* p = array; p < array + sizeof(array)/ sizeof(array[0]); ++p)
     cout << *p << endl;
}

对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围

void TestFor()
{
 int array[] = { 1, 2, 3, 4, 5 };
  
  //注意:这里如果要改变原数组元素的值,要加引用&
 for(auto& e : array)
     e *= 2;
 
 for(auto e : array)
     cout << e << " ";
 
 return 0;
}

注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。

5.2 范围for的使用条件

1.for循环迭代的范围必须是确定的。
2.迭代的对象要实现++和==的操作。(关于迭代器这个问题,以后会讲,现在提一下,没办法讲清楚,现在大家了解一下就可以了)

六,nullptr关键字

在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。

在C语言中,如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:

void TestPtr()
{
 int* p1 = NULL;
 int* p2 = 0;
 
 // ……
}

NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:

#ifndef NULL
#ifdef __cplusplus
#define NULL   0
#else
#define NULL   ((void *)0)
#endif
#endif

可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void)的常量* 。不论采取何种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/fe6bbcdae8264ae2b7b7771de6e53add.png

程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,所以会调用f(int)函数,因此与程序的初衷相悖。

在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void )0。

注意:
1.在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入的。

2 在C++11中,sizeof(nullptr) 与 sizeof((void)0)所占的字节数相同。*

3.为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/560510.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python 比较文本文件

1、问题背景 我们需要比较一个文本文件 F 与路径下多个其他文本文件之间的差异。我们已经编写了以下代码&#xff0c;但只能输出一个文件的比较结果。我们需要修改代码&#xff0c;以便比较所有文件并打印所有结果。 import difflib import fnmatch import osfilelist[] f op…

Don‘t fly solo! 量化之路,AI伴飞

在投资界&#xff0c;巴菲特与查理.芒格的神仙友谊&#xff0c;是他们财富神话之外的另一段传奇。巴菲特曾这样评价芒格&#xff1a;他用思想的力量拓展了我的视野&#xff0c;让我以火箭的速度&#xff0c;从猩猩进化到人类。 人生何幸能得到一知己。如果没有这样的机缘&…

使用共振峰提取元音音素/从声音生成口型动画

视频效果 我前段时间研究了下从声音提取共振峰的方法。今天测试了下实际效果。 我使用一段33秒的女声视频&#xff0c;提取元音后使用静态视位图序列生成了一个视频&#xff0c;效果如下&#xff1a; b站视频&#xff1a; https://www.bilibili.com/video/BV1JD421H7m9/?vd_…

泛型的初步认识(2)

前言~&#x1f973;&#x1f389;&#x1f389;&#x1f389; hellohello~&#xff0c;大家好&#x1f495;&#x1f495;&#xff0c;这里是E绵绵呀✋✋ &#xff0c;如果觉得这篇文章还不错的话还请点赞❤️❤️收藏&#x1f49e; &#x1f49e; 关注&#x1f4a5;&#x…

MYSQL之增删改查(中)

前言&#xff1a; 以下是MySQL最基本的增删改查语句&#xff0c;很多IT工作者都必须要会的命令&#xff0c;也 是IT行业面试最常考的知识点&#xff0c;由于是入门级基础命令&#xff0c;所有所有操作都建立在单表 上&#xff0c;未涉及多表操作。 4、“查”——之单表查询 My…

html select 支持内容过滤列表 -bootstrap实现

实现使用bootstrap-select插件 http://silviomoreto.github.io/bootstrap-select <!DOCTYPE html> <html> <meta charset"UTF-8"> <head><title>jQuery bootstrap-select可搜索多选下拉列表插件-www.daimajiayuan.com</title>&…

部署ELFK+zookeeper+kafka架构

目录 前言 一、环境部署 二、部署ELFK 1、ELFK ElasticSearch 集群部署 1.1 配置本地hosts文件 1.2 安装 elasticsearch-rpm 包并加载系统服务 1.3 修改 elasticsearch 主配置文件 1.4 创建数据存放路径并授权 1.5 启动elasticsearch是否成功开启 1.6 查看节点信息 …

面试不慌张:一文读懂FactoryBean的实现原理

大家好&#xff0c;我是石头~ 在深入探讨Spring框架内部机制时&#xff0c;FactoryBean无疑是一个关键角色&#xff0c;也是面试中经常出现的熟悉面孔。 不同于普通Java Bean&#xff0c;FactoryBean是一种特殊的Bean类型&#xff0c;它的存在并非为了提供业务逻辑&#xff0c;…

使用Python进行自动化测试

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 如何使用Python进行自动化测试&#xff1a;测试框架的选择与应用 自动化测试是软件开发过程…

代码随想录算法训练营DAY28|C++回溯算法Part.4|93.复原IP地址、78.子集、90.子集II

文章目录 93.复原IP地址思路确定非法的范围树形结构 伪代码 78.子集思路伪代码实现CPP代码 90.子集II思路CPP代码用used去重的办法用set去重的版本不使用used数组、set的版本 93.复原IP地址 力扣题目链接 文章讲解&#xff1a;93.复原IP地址 视频讲解&#xff1a;回溯算法如何分…

curlftpfs和fusermount

curlftpfs 是一种 Linux 系统下用来将 FTP 服务器挂载为文件系统的工具&#xff0c;这意味着可以通过本地目录来访问和操作 FTP 服务器上的文件。 挂载FTP服务器到本地系统 为了挂载FTP服务器到本地系统中&#xff0c;使用curlftpfs工具&#xff0c;可以按照以下格式书写命令…

如何通过MSTSC连接Ubuntu的远程桌面?

正文共&#xff1a;666 字 12 图&#xff0c;预估阅读时间&#xff1a;1 分钟 前面我们介绍了如何通过VNC连接Ubuntu 18.04的远程桌面&#xff08;Ubuntu 18.04开启远程桌面连接&#xff09;&#xff0c;非常简单。但是有小伙伴咨询如何使用微软的远程桌面连接MSTSC&#xff08…

黑灰产行业简介

参考&#xff1a;2021年黑灰产行业研究及趋势洞察报告 1. 有哪些场景面临大量黑灰产攻击&#xff1f; 1.营销活动场景 -- 该场景最为猖獗 1. 抹机及接码注册&#xff1a;黑灰产会使用抹机工具修改设备参数伪装成一台新设备&#xff0c;再配合联系卡商进行手机号接码&#xf…

项目7-音乐播放器3(删除模块+播放音乐模块设计)

1.播放音乐模块设计 1.1 请求响应设计 请求&#xff1a; { get, /music/get?pathxxx.mp3 } 响应&#xff1a; { 音乐数据本身的字节信息 } 1.2 后端代码 1. Files.readAllBytes(String path) : 读取文件中的所有字节&#xff0c;读入内存 &#xff…

java/C#语言开发的医疗信息系统10套源码

java/C#语言开发的医疗信息系统10套源码 云HIS系统源码&#xff0c;云LIS系统源码&#xff0c;PEIS体检系统&#xff0c;手麻系统 源 码&#xff0c;PACS系统源码&#xff0c;微源预约挂号源码&#xff0c;医院绩效考核源码&#xff0c;3D智能导诊系统源码&#xff0c;ADR药物…

UE5(基础动作)多人游戏制作蹲伏

1.创建输入操作&#xff0c;IA_Crouch 在输入映射中添加 IA_Crouch,在触发器中创建两个索引&#xff0c;已按下已松开来创建蹲伏输入。 蹲伏操作必须要勾选角色-角色移动-crouch勾选可蹲伏否则你的人物无法真正蹲下。 为蹲伏创建函数&#xff0c;创建布尔来判断是否蹲伏。 通过…

链表经典算法OJ题目

1.单链表相关经典算OJ题目1&#xff1a;移除链表元素 思路一 直接在原链表里删除val元素&#xff0c;然后让val前一个结点和后一个节点连接起来。 这时我们就需要3个指针来遍历链表&#xff1a; pcur —— 判断节点的val值是否于给定删除的val值相等 prev ——保存pcur的前…

LCR 023. 相交链表

给定两个单链表的头节点 headA 和 headB &#xff0c;请找出并返回两个单链表相交的起始节点。如果两个链表没有交点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 注意&#xff0c;函数返回结果后&#xf…

大话设计模式-装饰器模式

大话设计模式书中&#xff0c;作者举了一个穿衣服的例子来为我们引入装饰器模式。 概念 定义 装饰模式在书中的定义是&#xff1a;动态地给一个对象添加一些额外的职责&#xff0c;就增加功能来说&#xff0c;装饰模式比生成子类更灵活。 这句话直接去理解可能会有点抽象&#…

javase__进阶 day13stream流和方法引用

1.不可变集合 1.1 什么是不可变集合 ​ 是一个长度不可变&#xff0c;内容也无法修改的集合 1.2 使用场景 ​ 如果某个数据不能被修改&#xff0c;把它防御性地拷贝到不可变集合中是个很好的实践。 ​ 当集合对象被不可信的库调用时&#xff0c;不可变形式是安全的。 简单…
最新文章